Alkene Addition Reactions 2

Give the product for each reaction. Do not peek at the answers until you have a reasonable solution. Answers are shown below.

	:CH ₂	
	Et ₂ O	
	$\stackrel{\stackrel{\oplus}{N}=N-CH_2}{\longrightarrow}$	
CH ₃	о 	
	CH ₂ Cl ₂	
	MCPBA CH ₂ Cl ₂	
	0s0 ₄ H ₂ 0 ₂	
CH ₃	0s0 ₄ H ₂ 0 ₂	
CH ₃	KMnO ₄ cold, dilute	

Alkene Addition Reactions 2

Give the product for each reaction. Do not peek at the answers until you have a reasonable solution. Answers are shown below.

CH ₃	KMnO₄ hot, conc.	
CH ₃	1. 0 ₃ 2. DMS	
	1. 0 ₃ 2. DMS	
CH ₃	1. 0 ₃ 2. DMS	

ANSWER KEY

Alkene Addition Reactions 1

	:CH ₂	H /////
	Et ₂ O	
	$\stackrel{\stackrel{\oplus}{\mathbb{N}} - \operatorname{CH}_2}{\longrightarrow}$	· · · · · · · · · · · · · · · · · · ·
CH ₃	о сн ₃ с—оон ————	H O CH ₃
	CH ₂ Cl ₂	
	MCPBA CH ₂ Cl ₂	0
	0s0 ₄ H ₂ 0 ₂	ОН
CH ₃	0s0 ₄ H ₂ 0 ₂	H ₃ C
CH ₃	KMnO ₄ cold, dilute	CH ₃

ANSWER KEY

Alkene Addition Reactions 2

CH ₃	KMnO ₄ hot, conc.	О О СН ₃
CH ₃	1. 0 ₃ 2. DMS	O H CH ₃
	1. 0 ₃ 2. DMS	C H H
CH ₃	1. 0 ₃ 2. DMS	0 0 + + CH ₂

Compare KMnO4 under different reaction conditions:

- Cold and dilute conditions provides a cis diol similar to OsO4 reagent
- Hot and concentrated conditions results in cleavage of the C=C bond and oxidation of C-H bonds

Ozonolysis also cleaves C=C bond but does not further oxidize C-H bonds